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NUMERICAL MODELING OF THE PROCESS OF PENETRATION OF A RIGID BODY 

OF REVOLUTION INTO AN ELASTOPLASTIC BARRIER 

V. I. Kondaurov, I. B. Petrov, 
and A. S. Kholodov 

UDC 539.3 

We will consider the axisymmetric problem of the penetration of an absolutely rigid body 
of revolution into a deformable barrier of finite thickness. The rheology of the barrier 
material is described by the equations of flow of elastoplastic bodies. Important aspects 
of these problems are the sharply expressed wave character of the solution and the large 
deformations suffered by the barrier. Penetration problems have been the subject of a large 
number of experimental investigations, which have been used as a basis for studying the ef- 
fect of various controlling parameters and observable effects and constructing various ap- 
proximate methods of calculating penetration processes. However, a fully detailed picture 
of the processes of interaction of projectiles and deformable targets can be obtained only 
by means of the numerical solution of problems of this kind on the basis of various rheologi- 
cal models and a subsequent comparison with the experimental results in order to refine the 
mathematical model. 

The complex nature of these problems imposes rigid constraints on the choice of a nu- 
merical method of solution, the choice of independent variables, etc. In particular, for 
large penetration depths the use of traditional Lagrangian variables leads to considerable 
distortions (and often to a loss of regularity) of the difference net and the need to re- 
construct it periodically (which may lead to a significant loss of accuracy). The use of 
fixed Eulerian coordinates leads to difficulties in formulating the boundary conditions at 
the surface of the barrier and the need to choose a difference net with a large number of 
nodes in order to obtain accemtable accuracy in a continuous calculation without explicit 
isolation of the barrier surface. Both these approaches have been used in the numerical 
solution of problem s of this kind, for example, in [1-5]. IIere we shall use a moving coor- 
dinate system (tied to the upper and lower edges of the barrier) and the net-characteristic 
method [6], which allows the most natural construction of the computational algorithm near 
the edges of the region of integration and to a certain extent makes it possible to take into 
account the region of variation and the wave character of the solution. This explicit scheme 
of the first order of accuracy is one of those with a positive approximation (monotonic and 
majorant schemes, to use another terminology) and, as shown in [7], has minimum approxima- 
tion viscosity among the explicit two-layer schemes of this kind, which is an important 
property in the continuous calculation of nonsmooth (discontinuous) solutions without ex- 
plicit isolation of the surfaces of discontinuity [8]. 
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Formulation of the Problem 

In order to describe the behavior of a deformable barrier under the dynamic loads im- 

posed by an absolutely rigid projectile we will use the system of equations [9] 

vV ..... div (J = 0, ~" - -  Q [ v V ]  = o,  ( 1 )  

which includes the equations of motion and the Prandtl--Reuss theological equation for a 
homogeneous isotropic elastic~erfectly plastic material subject to the Mises yield condi- 
tion 

[(a) = tr(s-s)  - -  21# = 0, k = const.  ( 2 )  

I n  r e l a t i o n  (1). t h e  q u a n t i t y  Q = Q ( o )  i s  a f o u r t h - o r d e r  t e n s o r ,  w h i c h  i n  t h e  E u l e r i a n  
c o o r d i n a t e  s y s t e m  x 1 w i t h :  m e t r i c  t e n s o r  g i j  f o r  y i e l d  c o n d i t i o n  ( 2 )  h a s  t h e  f o r m  

I ~ $. 8 Id p (5~5~ ' 5 ~,~l~ tl ([) ( 3 )  Ot:! .... )~g~jghl T .. 
--zJ - k ~ J T j -~.}--- ~3 

I n  ( i )  the dot  denotes the  m a t e r i a l  d e r i v a t i v e  w i t h  r e s p e c t  to  t ime  t ;  p i s  the  d e n s i t y  o f  
t he  m a t e r i a l  i n  the  a c t u a l  c o n f i g u r a t i o n  o f  t he  body;  o i s  the  Cauchy s t r e s s  t e n s o r ;  s = 

-- ( ~ / 3 ) t r 6 " l  i s  the  s t r e s s  d e v i a t o r ;  I i s  the  u n i t  t e n s o r ;  k i s  the  y i e l d  p o i n t  i n  shea r ;  
X, ~ are elastic constants; H(f) is a function equal to zero at f < 0, and to unity at f ~ 0. 

It can be shown [4] that system (i) is suitable for describing the finite strains of 
an isothermal elastoplastic medium, if the following constraints hold: 

72 o %1. o/%, o-01k ~ o(1), (%1~)" << i, (4) 

where Po, Vo, Oo are the characteristic density, velocity, and stress respectively. 

Constraints (4) correspond to impact velocities of the order of the plastic wave veloc- 
ity [(% + 2D/3)/po] I/2. In this case the terms associated with the rotation of the particle 
as a rigid whole in the stress variation rate tensor can be neglected and @ used instead. 

In the approximation considered system of equations (i) in the components V, o is a 
quasilinear hyperbolic system with four families of characteristic surfaces The propaga- 
tion velocities c i of these surfaces relative to the particles of the medium in the direc- 
tion of the normal ~ are given by the relations [i0] 

[ 4~2 I s + ~ I"~1/~ 1 

;~ + I~ k 2 �9 

For the plane and axisymmetric problems the cone corresponding to c3 drops out. 

In the case of axial symmetry (x ~ - R, x 2 - Z, x 3 - e, ~/~e - 0) and the dimensionless 

variables x i = xi/xo, VR = VR/Vo,_Vz = Vz/Vo, ~ = tVo/xo, Vo = k/~po, ORR = ORR/k, ~ZZ = 
ezz/k, ~08 = o0e/k, oRZ = ~ % = %/k, ~ = ~/k, p = P/Po, where the velocity and stress 
components with subscripts R, Z, and e denote the physical components of the vector V and the 
tensor o, system (i) is written in the form 

au A~ 0u f 0-T + ~ - -  : 0 ,  k = t , 2 ,  u :  {.V~, V z, o'~ R, (~zz' ~ ORZ}" ( 6 )  

The nonzero coefficients of the matrices A k are as follows: 

~ i .  ~ = A~0--  A h = - -  ~, ~ = g ~ - -  , , - -  ~ ,  
Aal2 1 2 ~ 1 = A61 = A31 g ig4 ,  A!4I = g ig3  - -  ~,, A,le =: A ~ i  : gaga,  

A~: t A ~  g'fgl ~" A1; = A1 = A~ = ~-" ~ . -- 51 62 g 2 g c  

A~ ~ -- ~ ~ -- ~ ---- 0~-;~,-2~, ~- A ~ t  - -  g ~ - -  ~t, A ~  - -  g~ga - -  k, A~o. ~., 

g = {us/m,  • • XSRZ}, ~2 = [tI t  ( I ) / k  ~, 

f - -  [ OR , ~ - ~ ,  ( g l g  3 - -  ),) "- '~ ' ,  ( g ~  - -  X - -  2LI.) - ~ - ,  ( g 2 g 3  - -  ~'.) " ~ - ,  gag4 "-~"J. 

We will now formulate boundary conditions for system (6) corresponding to the problem 
of an absolutely rigid circular cylinder with a conical head in axial impact against an elas- 
toplastic barrier occupying at the initial time t = 0 the region {0 < R < Ro, 0 < Z < i}, 
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where Ro is the ratio of the original radius of the barrier to its thickness. Let the later- 
al (cylindrical) part of the barrier be rigidly fixed, i.e., let the velocities of points on 
it be equal to zero. We denote by zH, B = zH,B(t, R) the functions giving the instantaneous 
position of the lower and upper edges, which are subject to determination together with u(t, 
R, Z). 

For the functions zH,B(t, R) the following equations hold: 

~Z B,~ (t, R) I . ,, OZ ~'r~ (t, R) 
Ot n , + V R ( t , H , Z ~ " ( t , ~ ) )  ~ - - V z ( t ,  tt, Z 'a ' ( t ,  tO), (7) . . . .  

which make i t  p o s s i b l e  to d e t e r m i n e  the  shape  o f  the  s u r f a c e s  z B , H ( t ,  R) f rom t h e i r  i n i t i a l  
shape zB(0, R) = l, zH(0, R) = 0. 

Equation (7) follows from the differentiation with respect to t of the dependences 
zH, B = zH'B[R($ i, t), t] as a complex function of time t and the Lagrangian coordinates ~i 
and the definition of the velocity vector of a material particle. We note that the condi- 
tion V R E 0 at R = 0 and R = Ro makes it unnecessary to establish boundary conditions for (7), 
i.e., the solution of (7) is completely defined by the initial data alone. 

The solution of system of equations (6) was determined in the region {0 ~ R < Ro, 
zH(t, R) < Z < zB(t, R)} with the unperturbed initial conditions u(0, P, Z) = 0. 

The boundary conditions on the lateral surface of the barrier R = Ro, 0 < Z ~ 1 take 
the form 

VR(t  , R o , Z ) =  = V z ( Z  , R o , t  ) = 0 .  

The lower  s u r f a c e  o f  the  b a r r i e r  Z = z H ( t ,  R) was t aken  to  be un loaded  

%~(t, ~, z"(t, [~)) = %t(t, R, z'(t, 1~)) .... (). ( 8 )  

On the upper surface of the barrier, depending on whether for the given values of R, t it is 
in contact with the surface of the projectile or not, we imposed either conditions (8) or 

v --- v~( t ) /~ l  + (oz~loRV, %t(t, R, z~(t, R))--  o, 
(9) t (t, m)] V + (oz"/ot ) v ~ = \ V z - - V  n ~ II 1 

where VB(t) 0 is the projectile velocity determined from the equation of motion 

S~ 

Here ,  t he  i n t e g r a t i o n  i s  c a r r i e d  ou t  f o r  a l l  v a l u e s  o f  R f o r  which z Y ( t ,  R) ~ Z ~ ( t ,  R) and 
~ n n ( t ,  R, z B ( t ,  R)) < 0, and mo i s  t he  mass of  t he  p r o j e c t i l e ,  ZY = ~ ( t ,  R) = ~(0 ,  E) + 

t 

yVB(~)dx, R<~R~ is the equation of the surface of the head of the axisymmetric projectile 
0 
(for a conical head ~(0, R) = l+Rtan ~). If zB(t, R), determined from (7), is less than 
~(t, R), then for these values of R we used boundary conditions (8); in the opposite case 
we assumed zB(t, R)=~(t, R) and used-boundary conditions (9). For those values of R for 
which at time t the requirement zB(t, R). = ~(t, R) has already been met, we used conditions 
(9), but if, in this case, Vn < VB(t)//I+ (dZB/dR) 2, then the subsequent computation of 
zB(t, R) was carried out in accordance with (7) and using boundary conditions (8). 

On the axis of symmetry R = 0 we used the-asymptotic equations obtained from (6) by pass.. 
age to the limit as R + 0. In this case 

V R = O, aat~ = aoo' aRz = O, R =.0, Z~(t, O) ~ Z ~. ZB(t, 0). ( t 0 )  

For the numerical calculations we used a moving coordinate system n i = ~i(xm, t) such 
that 

I] I = B/R0, 42 = (Z -- ZH)/(Z B -- ZH). (ii) 

Relations (ii) map the actual configuration of the body onto the unit square, the uni- 
form coordinate net in the plane (~i, hi) corresponding in the plane (R, Z) to a curvilinear 
net, whose step is constant for fixed R. 

i _ a)li/0xm wi= oxi/at I ,: then system (6) in the variables If we introduce the notation ~m- ~ 
(t, n l) can be written in the form 
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o~:o~ 1~ + B'~ (au/O,f") - I = o, 

R = Bo~:, Z ~ Z"O: ,  t) + ~]'-[Z~(~L t) - -  Z'X(T:, t)]. 

As before system (12) is hyperbolic. The rates %~(a = i, 2, ..., 6) of propagation of 
weak discontinuities in the direction of the normal n i = Vm(3xm/3qi) are given by the ex- 

pression 

~There c~ are given by relations ( ~  �9 ,,, j o 

From the hyperbolicity it also follows [ii] that there exists a nondegenerate matrix 

= m(u, n) such that 

t%l:~B[~?n m c%f~%~16~? (m : t ,  2, r ~, ? == 1, 2, ., 6), (13) 

where there is no summation with respect to ~. As may be seen from (13), the rows of ~ are 
the left-hand eigenvectors of the matrix Bnnm . 

We now denote the matrix m, corresponding to n = (i, 0) by the symbol ~. Multiplying 
system (12) from the left by ~ and using (13), we obtain the characteristic form of the sys- 
tem of equations 

1 ~ d ~ 0)13 ( dtt~/ds~) + o)a~B{]~; ( dtt.J ?] ) ~= 1 ~%~I~, (14) 

where there is no summation with respect to ~; duB/ds~ = 3uB/3t + %~(3uB/3D ~) is the deriva- 
tive along the bicharacteristic corresponding to the velocity %~ and the normal n = (i. 0). 
Multiplying (14) from the left by ~ = (~)-~,we obtain 

+ 

Similarly,'denoting by ~2 the matrix co for the value n = (0, i) and ~2 = ( =)-x, we find 

~(~ v ( duv/ d% ) ~ B~z v ( Ou.v/ a~l ~ ) = ]r ( 1 6 )  

From (12) , (15) , and (16) there follows 

I = ~ o . . , ( ~ . , ,  ~ ~ - / = ~ , ~ = ~ , 2 ,  ~.t~,'~ ~,2, .,6). O%~lOt ~ , n  . . . . .  / m .  = "" (17) 

Apart from the derivative with respect to time, equation (17) contains derivatives only 
along the bicharacteristics and is convenient for constructing the characteristic methods of 

calculation. 

Numerical Calculation Method 

For the numerical solution of these boundary-value problems we used the explicit net- 
characteristic method [6, 7] of continuous computation. In this method the solution is ob- 
tained layerwise at t = const, and the nodes of the difference net are formed by the inter- 
section of the lines Nm = const. Each node is defined by the numbers (11, Z2, n), where ~i = 
Zihi, t = i, 2, where hi is the step with respect to the space coordinates, t=~Tn, T n is the 

n 

step with respect to time. In order to compute the solution vector u in an inner node on the 
layer n + 1 from the values of the n-th layer, we use the relations 

n + l  __ n ~ " " " _ _ . i % ~ - - o u ~ , ~ + ~ f ~ ,  o = ~ +  ~ O ' A ~ - - U ~ A ~ I ~ ,  A+ := 0,5 (A~ +.I Aq), * ~ _ = o , 5 ( ~ - I A ~ l ) ,  (18)  

where hi are diagonal matrices composed of eigenvalues X ~, A~ are the right-hand and left- 
hand differences of the solution vector on the n-th layer along the coordinate line qi. 

The difference scheme (18) follows from (17) when the derivatives along the bichar- 
('n+1--U(~.~))/Xn, where u(8,t ) is the acteristics du/ds~ are replaced by the difference relation t-t1~ 

value of the solution vector at the point of intersection of the bicharacteristic correspond-- 
ing to %~ and the coordinate line Ni on the n-th time layer. The value of u(B,k ) is obtained 
from the values of u~ , at the nearest two nodes of the net by linear interDolation. Conse- 

. ~ $IL2 . 

quently, the scheme In question has a five-point pattern. 

Scheme (18) has the least approximation viscosity among the explicit two-layer schemes of 
first order of accuracy [6, 7] and belongs to the class ~f schemes generating a monotonic 
"smeared" shock wave profile [8]. 

In order to compute the solution at the boundaries we used the two boundary conditions 
(9) and four equations in characteristic form that correspond to characteristic planes passing 
through the body. For the boundary ~I = 1 these equations take the form (14), where a = l, 2, 
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3, 4, B, Y = i, 2, ..., 6. Using (13), from which there follows 

2 2 
B ~  : f ~ k  2 ~ v '  

we can write system (14) in the form, analogous to (17), containing only derivatives along 

the bicharacteristics 

du~ ( du aui~' 1 2 ~ s 1 
- -  : %q~fl~'  

a = i, 2, 3, 4, ~, l, y = i, 2, ..., 6; there is no summation with respect to a. As in the 
case of internal points, in (19) we now replace the derivatives du/ds.~ by the difference re- 
Lation (u}*l+:--u(~.O)/* n. As a result we obtain a system of four difference equations 

0)1 Ull'g'n+l = ,L.n. 1 ~lll 2,~, .j_ TTn A1- {~)1~ -- ll;;/'2" -~- T "g 0)1 (~2A-~~ -- ~2A2--'2"~) "11[2'n 

which is closed by two boundary conditions (8), (9). 

Results of the Numerical Calculations 

In this formulation we calculated the processes of collision of absolutely rigid axisym- 
metric projectiles with deformable barriers of finite thickness at various values of the 
parameters defining the problem. Certain results of these calculations are presented in Figs. 
1-6. 

An important feature of the problem is the strong influence on the solution of the 
radial unloading waves. There is relatively little concerning this effect in the existing 
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studies of the penetration of elastoplastic barriers. In particular, as may be seen from 
the distribution of the stresses oZZ(q I) at n 2 = 1 (Fig. i) and oZZ(q 2) at n I = 0 (Fig. 2), 
for moments of time at which the perturbations due to the impact of the rigid cylinder and 

cone have not yet reached the rear face of the barrier, the effect of the radial waves in 
this initial stage of the penetration process is decisive. In Fig. la curves 1-8 correspond 
to ~ = 0.57, t = 0; 3.5"10-3; 6.43~i0-3; 1.2"i072; ].82"10-2; 2.1-10-2; 2.4.10-2; 3.10-2~ 

in Fig. ib the curves 1-6 correspond to ~p = 0.25~ t = 0; 6.43"10-3; 2.11.10-2; 2.7"10-=; 
3.45"10-2; 6.78"10 -2 . In Fig. 2a curves 1-6 correspond to ~ = 0.5v, t = 3.5"10-3; 6.4"10-3; 
1.2"10-2; 1.8"10-2; 2.4-10-2; 3.0"10-=; and in Fig. 2b curves 1-5 correspond to ~ = 0.25~, 
t = 3.5"10-3; 6.4"10-3; 1.8"10-2; 2.4-10-2; 3.9"10 -2 . 

Here and in what follows, the calculations were made for the following dimensionless 
parameters of the problem: mo = 0.174, V~ = 2.33, R~ = 0.16, H = 1.0, % = 148.0, V = 99.0. 

The time dependence of the resisting force is represented in Fig. 3. The rapid fall in 

.I. arm dS (S, is the projection of the contact surface on the plane Z = const) and the F(0 pres- 
s. 

ence of a local minimum in the case of a cylindrical projectile (curve i, ~ = 0.5~) indicate 
the possible "rebound" of the projectile and loss of contact between a sufficiently thin pro- 
jectile and the thick barrier until the arrival of the tension wave reflected from the rear 
face ( 2 = 0), exclusively due to the action of the radial unloading waves. The calculations 
also show that in the case of a cylindrical projectile the axial symmetry of the problem leads 
to a considerable increase in the amplitude of the unloading waves converging on the axis 
R = 0. This may result in the appearance of tensile normal stresses in the neighborhood of 
the axis R = 0, i.e., "local rebound" of part of the contacting surface, although the resist- 
ing force F < 0. 

In the case of projectiles with a conical head (curves 2, 3, q~= 0.25~; 0.i~) the F(t) 
graphs are characterized by an initial increase of F(t) owing to the increase in contact area 
and the presence of a maximum corresponding to the moment of complete penetration of the head 
into the barrier. The amplitude of these maxima increases monotonically with increase in the 

angle ~. 

Beyond the maximum (absolute for projectiles with a conical head, local for cylindrical 
projectiles) the resisting force F decreases to zero. However, its approach to zero is not 
asymptotic, the derivative dF/dt even increasing at the end of the process. This is because 
at small loads the barrier behaves elastically, and more rigidly than in the plastic state. 

The dependence of the depth of penetration L and the penetration velocity V B on time t 
for cylindrical projectiles with a conical head is reproduced in Fig. 4 (dashed and continuous 
curves respectively). The L(t) curves are monotonic in character, the depth of penetration 
decreasing with increase in the head half-angle ~. The VB(t) dependence for cylindrical 
(curve i, ~ = 0,5~) and "blunt" conical projectiles (curve 2, ~ = 0.4~) has singularity in 
the form of a "shelf" or point of inflection corresponding to the same moment of time as the 
extremum of the F(t) curve in Fig. 3. The presence of this singularity is also due to the 
radial unloading waves. With decrease in the half-angle of the cone ~ (curves 3, 4;~ = 0.25~) 
this effect disappears. Pointed projectiles are characterized by a slighter fall in the 
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velocity V B at the beginning of the process, but subsequently the derivative dVb/dt is almost 

the same for any shape of head (the other parameters being equal). 

The results obtained indicate that the important influence of the radial stress waves 
on the penetration process reduces the value of the information obtained by attempting to 
use plane approximations for calculating the "oblique" nonaxisymmetric collision of a rigid 

body with a barrier. 

The dependence of the force F = F(V B) on the instantaneous penetration velocity, shown 
in Fig. 5, is of some interest. Clearly, the calculated family of curves, which depend on 
the shape of the projectile head, can be divided into two parts: a right-hand part, where 
there are substantial differences, and a left-hand part, where the curves practically coin- 
cide. The boundary between these regions is determined by the position of the extreme right- 
hand maxima in Fig. 3. Parametrically the dependence of the resisting force on the penetra- 

tion velocity can be represented in the form 

{ ~I (v~, z) v,, ~ v, (z), 

where X is  the p ro j ec t i l e  head form parameter (for conical heads the half-angle ~ can be 
taken as • V, is  the veloci ty  of the p r o j e c t i l e  at the moment of t o t a l  penetration of the 
sharpest head. 

Thus, a difference in the shape of the head affects the F(V B) dependence only in th~ 
initial stage of the axisymmetric process of collision between rigid bodies of revolution 
and an elastoplastic barrier. This is perfectly consistent with the conclusions of [12]~ 
where a similar result was obtained experimentally for cylindrical projectiles with differ- 
ent conical heads, and can be used for creating design-analytical engineering models of pene- 

tration processes. 

In order to pred• the regions of possible failure we calculated the stress energy 

density fields for plastic strains 

and the maximum principal stress fields 

In  F i g .  6 we have p l o t t e d  t he  i s o l i n e s  o f  Ap and e l  (dashed  and c o n t i n u o u s  l i n e s ,  r e -  
s p e c t i v e l y ) ,  from which it is clear that a region of shear failure, for which the plastic 
strain energy Ap constitutes a criterion, is most likely at the tip and edges of the cone. 
However, failure due to the action of tensile stresses may be localized at the rear face of 
the barrier following interactionbetween that face and the compression wave. 

In conclusion, we note that a comparison of the results of the calculations for two 
types of boundary conditions at the cylindrical projectile-barrier contact surface (no slip 
and slip without friction) revealed a difference of not more than 2% in the value of the 

penetration depth. 
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MODEL REPRESENTATION OF THE ULTIMATE STRAIN DURING CREEP 

M. D. Dacheva, A. M. Lokoshchenko, 
and S. A. Shesterikov 

UDC 539.4:539.376 

Within the framework of the Yu. N. Rabotnov conception of the equation of state [i], we 
consider a description of strain processes under conditions when cumulative damage m is govern- 
ing. 

We use the version of the equation of state proposed in [2] 

de/dt  = G ' ( s )~ /d t  -~ F(s); (1 )  
d o / d t  = g ' ( s )~ /d t  -I- l(s) �9 ( 2 )  

E q u a t i o n s  (1)  and  (2)  d e t e r m i n e  t h e  c h a n g e  i n  t h e  t o t a l  s t r a i n  s a n d  t h e  damage  ~ i n  t h e  t i m e  
t up to rupture t = t*. The prime denotes differentiation with respect to the effective 
stress s. The functions G'(s), F(s), g'(s), and f(s) in (i) and (2) grow monotonically as s 
increases. 

Let a constant tensile force be applied to a specimen and cause a stress Go and a small 
strain s. The effective stress in (i) and (2) is a function of the parameter m. We consider 
two versions of this function. In the first, we take the dependence 

s = a0 exp o, (3) 

which, for small strain, agrees with the dependence proposed in [3]. In the second version 
we use the function 

s = a o l ( l  - -  ~), (4) 
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